If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x+x^2=180
We move all terms to the left:
16x+x^2-(180)=0
a = 1; b = 16; c = -180;
Δ = b2-4ac
Δ = 162-4·1·(-180)
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{61}}{2*1}=\frac{-16-4\sqrt{61}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{61}}{2*1}=\frac{-16+4\sqrt{61}}{2} $
| -3(7x+3)-7x=8x+7(1-4x) | | -2/2x=7 | | v/12=3/13 | | 3t-2(3+t)=-18 | | (d+9)10=210 | | -2x/100=0.05 | | -00.5+x/100=3x/100+0.07 | | -1x-x3.8=-718.2 | | 4x-5=98 | | 2(-6x+3)=-2(1+8x) | | 1/3÷x=5/6 | | 718.2=x+(x3.8) | | 9x+1=5x-8 | | 15=u/7 | | 4÷x+1/2=3/4 | | x÷4+1/2=3/4 | | -14=a/14 | | -n-2(2n+8)=-7n+8(n-5) | | 6x+(35/x)=29 | | -4b+26=-7(-8+3b)+2b | | 2x³+11x²+8x-21=0 | | 79+34=x | | n/15=-15 | | -4/7-x=-1/3 | | D=20+-1.95c | | -(-6n-8)=8-3n | | -4(-8x-6)=-12-4x | | -4x2=-7x+15 | | -3k-29=-7(1+2k) | | x(2x+3)=127,x= | | ∠A=6x−2=4x+48 | | -q^2+27q+415.5=0 |